Comparison of state space and fuzzy control
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Introduction 

This work will provide a comparison of state space and fuzzy control methods for a paper machine roll.  The state space approach is most frequently used as long as it is possible to derive a mathematical model that describes the process precise enough.  Nevertheless there are some cases where a mathematical model is either not easy to be developed because the physic of the problem is not known well or the mathematical model would be to complex to be useful.  In such cases fuzzy control, based on rules can be of advantage.  In general fuzzy controllers try to emulate human knowledge about the control task.

The paper machine roll was chosen as an example because it is easy enough to be handled mathematically and still has some interesting problems.  On of them is, that the control task is multivariable i.e. not only a uniform thickness of the paper is desired but also maintaining a parallel alignment.  Another problem is, that maintaining a uniform thickness is more important than maintaining the parallel alignment due to cost reasons.

This work will first develop a mathematical model of the roll bite, describe how to control the system using a state space based approach and finally develop a fuzzy controller. A comparison of the results will conclude the work.

Development of the physical model

Figure 1 shows a schematic drawing of the machine roll to be controlled.  In order to manipulate the vertical position and orientation of the roll there are two standard dc permanent magnet servo drives available.  Each of these drives is connected to a ball screw that applies the force of the motors to the axis and also converts the rotational movement of the motors into the required axial [image: image1.png]2.6 ohms
4.3 milliHenri
0.14 Nm/Amp.
0.14 volts/rad/sec
0.015 x10-3 Kg-m

armature resistance
- armature inductance
torque constant
backemf constant
. polar moment of inertia




movement.  The mass and inertia of the roll are small compared to the effective reflected mass and inertia on the motors obtained through the ball screws and are therefore neglected.  With p denoting the pitch of the ball screw, which is assumed to be 0.1cm/rev, we can derive the reflected mass mr and the reflected inertia Jr of the roll as follows:

 eq m\s\do6(R)  =  eq 2 J\s\do6(p) p\s\up6(-1) 
 eq J\s\do6(R)  =  eq \f(1,4) m\s\do6(R) l\s\up6(2) 
The conversion between the torques produced by the motor (TM) into a force applied at the roll (FM) is obtained using the power conservation law:

 eq F\s\do6(M) = T\s\do6(M) p\s\up6(-1) 
Using these variables we can apply Newton’s Laws or the Lagrange method to come up with the motion laws for the given system:

 eq J\s\do6(R) \f(d\s\up6(2)q,dt\s\up6(2))  =  eq T\s\do6(R)  =  eq \f(l,2) F\s\do6(M1) - \f(l,2) F\s\do6(M2)
 eq m\s\do6(R) \f(d\s\up6(2)z,dt\s\up6(2))  =  eq F\s\do6(R)  =  eq F\s\do6(M1) + F\s\do6(M2)
FM1 denotes the force applied by the right motor, FM2 the force of the left motor.  The vertical position of the roll, measured in the centre, is denoted by z, the orientation by (.

The modelling of the servo drives shown in Figure 2, which are identical for both sides, can be done using Kirchhoff’s voltage and current laws as well as Newton’s Laws.  
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	Fig. 2: Schematic drawing and parameters of the dc motor drives


For the given drives we end up with 

 eq L\s\do(p) \f(di\s\do(a),dt)  =  eq e\s\do(a) - R\s\do(p) i\s\do(a) - K\s\do(e) (\s\do(m) 
 eq J\s\do(p) \f(d(\s\do(m),dt) =  eq K\s\do(t) i\s\do(a) 
State space control

From the differential equations derived above we can easily develop a state block diagram of the electrical servo drives. Figure 3 shows this block diagram and its inherent state feedbacks (black).  These state feedbacks are removed by adding decoupling state feedback (DSFb) shown in blue. 
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	Fig. 3: Electrical servo drives with DSFb and current loop, shown as torque modulators


Removing the state feedbacks removes the unwanted cross coupling between the states of the motor.  Herby denote  eq \o(K,\s\up6(^))\o(\s\do6(e),\s\up6(-1))  and  eq \o(R,\s\up6(^))\o(\s\do6(p),\s\up6(-1)) our best estimates of the usually not precisely known physical model parameters.  

Form the mathematical model we derived for the roll we know that our desired input signals are forces that can be translated into torques.  Therefore in a second step we add a current loop to both motors.  This current loop gives us direct access to the desired input variables.  In fact if we tune the current loops fast enough the assumption that the servo drives give exactly the output torque we require is nearly true and therefore simplifies the further design process.  The current loops are both tuned for a bandwidth of about 1000Hz, which is fast, compared to the desired roll dynamics. The tuning itself is done simply by evaluating the closed loop transfer function Gi after adding decoupling state feedback.  

 eq G\s\do6(i)(s)  =  eq \f(R\s\do6(a),L\s\do6(p) s + R\s\do6(a)) 
Evaluating this equation for the desired bandwidth leads to an active resistance of  eq R\s\do6(a) = 27.  Figure 3 shows the current loop in green.

Now that we have achieved direct access to the physical system input variables the next thing we nee to take care about is the manipulated input coupling.  In fact, both roll state variables are affected by both input variables what will cause problems if not considered in the controller design.  Furthermore if we would not take the input coupling into account we would not be able to achieve different dynamics for the vertical position and the orientation of the roll as required by the process.  Therefore we decouple the manipulated inputs by applying the inverse of the manipulated input-coupling matrix M  eq  to the system.

 eq \b \bc (\a(T\s\do6(R),F\s\do6(R))) = M  eq \b \bc (\a(T\s\do6(M1),T\s\do6(M2))) =  eq p\s\up6(-1) \b \bc(\a \co2 \vs4 \hs4 (\f(l,2),\f(l,2),1,1))  eq \b \bc (\a(T\s\do6(M1),T\s\do6(M2))) 
So far the only things we have done are the necessary preparations for closing the control loops on z and (.  Figure 4 shows the state block diagrams for the roll with added state feedback controllers for the roll angle and vertical position (green).  The servo drives are shown as torque modulators as explained above.  The chosen controller structure with an integration of the difference between the desired output and actual output instead of adding an additional integrator to the system has the advantage of not producing an unbounded number in the integration state and is mathematical equivalent.  For the calculation of the state feedbacks, we assume that we know our models parameters exactly, i.e. we assume  eq \o(K,\s\up6(^))\s\up6(-1) = K.  One should also recognize that 

although Figure 4 shows the motor as a torque modulator the mechanical assumption  eq T\s\do6(M)(s)  =  eq T\o(\s\up6(*),\s\do6(M))(s)  is not valid even though we tuned the current loops relatively fast.  Therefore this assumption was consequently not used for the design of the state feedback controllers.  Because of the process requirements we need to have different bandwidth in the position loop than in the angle loops.  The position loop was tuned to achieve bandwidth of 20Hz for  eq \o(z,\s\up6(.)), 5Hz for z and 1.25Hz for  eq \i(,,z).  The orientation loop was tuned for bandwidths of 1Hz, 0.25Hz and 0.0625Hz respectively.  These different bandwidths will take care of the process requirement, that it is more important to maintain a uniform thickness than a parallel alignment.  The feedback gains where tuned using root locus methods and are given in Table 1.
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	Fig. 4: State block diagram, including state feedback controllers for roll angle and position


	 eq b\s\do6(aq) [Nm/rad/s]
	 eq K\s\do6(saq) [Nm/rad]
	 eq K\s\do6(saq) [Nms/rad]
	 eq b\s\do6(aZ) 
[N/m/s]
	 eq K\s\do6(saZ) 
[N/m]
	 eq K\s\do6(saZ) 
[Ns/m]

	1.49e4
	2.34e4
	9.18e3
	2.98e5
	9.35e6
	7.3e7


Tab 1: State feedback gains for angle and position loops

Now that the controller is tuned the question arises how good the results are that we just calculated.  Because of the fact that in this application the command reference for each of the states is steady with respect to time command tracking is not as important as it might seem.  For sure nobody wants to produce paper where the thickness is modulated by a sine wave or everything else.  Therefore the main metric we are going to use to evaluate the performance of the closed loop system is dynamic stiffness.  The dynamic stiffness measures the inverse of how much disturbance is necessary to cause a unit change in the controlled variable.  This measurement gives direct insight for which frequencies we need to improve our controller, i.e. where are disturbances going to cause problems.  The simple system we are looking at only has two disturbances and therefore the only dynamic stiffnesses we can define are

 eq \f(T\s\do6(d)(s),q\s\do6(R)(s)) = 

 eq s\s\up6(4)  eq \f(+  eq 2 J\s\do6(R) R\s\do6(a) 

 eq s\s\up6(3) +  eq R\s\do6(a) b\s\do6(aq) 

 eq s\s\up6(2) +  eq R\s\do6(a) K\s\do6(saq) s +  eq R\s\do6(a) K\s\do6(iaq) ,
 eq \f(T\s\do6(d)(s),Z\s\do6(R)(s)) = 

 eq s\s\up6(4)  eq \f(+  eq 2 m\s\do6(R) R\s\do6(a) 

 eq s\s\up6(3) +  eq R\s\do6(a) b\s\do6(az) 

 eq s\s\up6(2) +  eq R\s\do6(a) K\s\do6(saz) s +  eq R\s\do6(a) K\s\do6(iaz) , eq 2 L\s\do6(p) s\s\up6(2) + 2 R\s\do6(a) s ) 

Figure 5 shows plots of these two transfer functions.  As expected we achieve infinite steady state stiffness because we added state integrators on both angle and vertical position.  Also it can be seen that the disturbances needed to cause problems are of a quite high magnitude.  The dynamic stiffness could even be improved using disturbance input decoupling by either adding sensors that measure the disturbances or adding a disturbance estimator but these methods are not going to be discussed in this work.

	Dynamic stiffness
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	Fig. 5: Dynamic stiffness q\s\do6(R)(s)) eq \x \le \ri ()
 [Nm/rad] left and  eq \x \le \ri ()
 [N/m] right


This work done so far shows, that with a good physical model and the choice of appropriate state variables it is possible to develop independent dynamics for a system where this goal is not achievable using “classical” control structures either ignoring the cross coupling or controlling each axis individually. It was necessary to decouple the cross coupling state feedbacks and to tune the current feedback to get direct access to the inputs of the system to be controlled. Furthermore it was necessary to decouple the manipulated input coupling to avoid cross influencing of the inputs. After doing the decoupling steps we obtained two independent systems, were in both of them a well-behaved low energy state drives the high-energy states. Given this structure we developed state feedbacks on the system output to obtain the required dynamics. As a last step we added a disturbance input decoupling in order to raise the dynamic stiffness of our system.

Fuzzy Controller

The fuzzy controller that will be developed next has a completely different approach to solve the problem.  Instead of being based on a rigorous mathematical model it will be based on rules.  These rules are usually of the form “if A and/or B then C” and are most commonly developed using human knowledge about how to control the system.  It could be said that a fuzzy controller tries to emulate a human operator and its knowledge.  The first step, as it is for each fuzzy controller, is to define its variables.  Fuzzy controllers use linguistic variables and values.  In our example one variable is going to be “Angle” with attributes “positive small”, “positive big”, etc. Each of these attributes has a membership function associated. During the fuzzification the measured angular value will be assigned a membership value for each of these attributes.  Usually membership functions are scaled into [0,1] and therefore a membership of 1 means that the attribute is fully true and a membership of 0 that the attribute is not appropriate.  For example it is obvious that for an angle of lets say 0° the membership of “Angle is zero” will be 1 but the membership function of “Angle is positive big” will be nearly or equal to zero.  

Not only the input variables are encoded that way but also the output variables.  It would go way too much into the details to describe how the fuzzy controller operates to produce an output but a brief description shall be given.  After the inputs (crisp) are fuzzfied, i.e. the memberships for each attribute are evaluated the results are applied to the rule base.  Some of the rules will fire because their preconditions are at least part wise met and will produce fuzzy outputs.  This part of the fuzzy controller is widely known as interference.  The outputs of the interference engine are once again membership values for different attributes.  The process instead requires a crisp input signal, in our example the servo drives we use require a crisp torque command and not a membership value of the attribute “Little up”.  Therefore in the last step of a fuzzy controller the output variables are defuzzified which inverts the fuzzification process and we obtain a crisp output value. 

In our example we define the following fuzzy variables and attributes

HEIGT: Low (L), Little Low (LL), OK, Little High (LH) and High (H)

ANGLE: Negative (N), Negative small (NS), Zero (Z), Positive small (PS) and Positive

LEFT: Down (LD), Little Down (LLD), Still (LS), Little up (LLU) and Up (LU)

LEFT: Down (RD), Little Down (RLD), Still (RS), Little up (RLU) and Up (RU)

For the last two variables the additional L respective R denotes the left or the right motor because otherwise they would use the same attributes what would cause problems during the implementation.  Figure 6 shows how the membership functions are defined in the interval [-1,1].  For the practical implementation each of the variables is scaled in the range that makes physically sense, the principal scheme of the membership function does not change.  Of course it is possible to use different types of membership functions.  Besides the triangular shape used here, trapezoidal, bell and gaussian shapes are widely used in general every curve is a possible membership function.

Making use of the defined variables and attributes we can define the rule base in Table 2.  The rule base is to be read as follows.  For each pair of the input variables HEIGHT and ANGLE we obtain a rule 

IF HEIGHT=W AND ANLGE=X THEN LEFT=Y AND RIGHT=Z

The element (5,5) for example denotes the rule

IF HEIGHT=OK AND ANGLE=Z THEN LEFT=LS AND RIGHT=RS

Or even closer to our natural understanding 

IF HEIGHT=OK AND ANGLE=ZERO THEN LEFT=STILL AND RIGHT=STILL

Because of the fact that if the roll is at the right vertical position and has the right orientation we do not need to operate the servo drives.  The rule base defines a total of 25 rules and all of them are evaluated for each time-step.
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	Fig. 6: Membership function for fuzzy variables


	and
	N
	NS
	Z
	PS
	P

	L
	LU/RU
	LLU/RU
	LLU/RLU
	LU/RLU
	LU/RU

	LL
	LS/RU
	LS/RLU
	LLU/RS
	LLU/RS
	LU/RLU

	OK
	LD/RU
	LLD/RLU
	LS/RS
	LLU/RLD
	LU/RD

	LH
	LD/RLD
	LLD/RS
	LLD/RLD
	LS/RLD
	LLD/RD

	H
	LD/RD
	LD/RLD
	LLD/RLD
	LLD/RD
	LD/RD


Tab. 2: Rule-base

The fuzzy controller we developed is very simple, it uses only five attributes per variable and only two input variables.  It could easily be improved by adding more attributes for example “VERY LOW” and “VERY HIGH” or adding more input variables.  Especially adding derivatives of angle and position as additional input variables would for sure improve the performance of the controller because these variables would give us the rate of change so that we could react in advance if for example the angle changes very fast.

Implementation

All algorithms were implemented using MatLab/Simulink. 
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	Fig. 7: Simulink block diagram for state space controller
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	Fig. 8: Height of roll bite [m] vs. time [s] using state space controller
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	Fig. 9: Angle of roll bite [rad] vs. time [s] using state space controller


The actual implementation of the fuzzy controller uses the max-min composition for the interference engine although other methods are also possible and scales the variables appropriately.  The Simulink block diagram for the fuzzy controller is shown in Figure 10.
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	Fig. 10: Simulink block diagram of fuzzy controller
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	Fig. 11: Height of roll bite [m] vs. time [s] using fuzzy controller
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	Fig. 12: Angle of roll bite [m] vs. time [s] using fuzzy controller


Conclusion

Both controllers are able to fulfil the control task. However the performance of the state space based approach is much better than the one based on fuzzy logic.  This is because the mathematical model used describes the actual process perfect due to the fact that we do not consider any parameter variations, as they would be present in reality.  Therefore it is obvious that the state space controller performs much better than the fuzzy controller.  In general this result will always be true, if the mathematical model is precise enough and the state space controller is designed right.  Nevertheless as mentioned before, as soon as there are significant parameter variations or the mathematical model of the system is not known or to complex a fuzzy controller might be the only possible solution.  The biggest disadvantage of using fuzzy controller is that there are no metrics for performance, stability and the only evaluation possible is conduction experiments or running simulations.  If the fuzzy controller is not working properly most of the things that can be done are playing around with the membership functions, the method used for the interference engine but there is no strict way what to do.  In the traditional state space controller case however there are all the metrics needed for evaluation and the robust control theory even gives us ways to prove how much parameter variations our controller can tolerate before it is going unstable.  The lack of these metrics is the most important disadvantage of fuzzy controllers.  Therefore one should whenever possible use a state space based controller instead of a fuzzy controller. 
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Fig. 1: Schematic drawing of the system�
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